REVIEW ARTICLE

Review of alien decapods (Crustacea) in the Aegean Sea

Kostas Kapiris¹*, Tuncer Katağan², Suat A. Ateş³, Alexis Conides¹

¹Institute of Marine Biological Resources, Hellenic Centre for Marine Research, GREECE
²Department of Hydrobiology, Faculty of Fisheries, Ege University, 35100, Izmir, TURKEY
³Department of Hydrobiology, Faculty of Fisheries, Çanakkale Onsekiz Mart University, 17100, Çanakkale, TURKEY

*Corresponding author: kkapir@ath.hcmr.gr

Abstract

The whole Aegean Sea hosts 27 alien decapod crustaceans (21 Indo-Pacific, 6 Atlantic species). Ten of these species (3 Dendrobranchyata, 1 Caridea, 6 Brachyura) were only reported along the Greek coasts of the Aegean Sea. Among them, six species were originated from the Indo-Pacific areas and four species from the Atlantic coasts. On the other hand, 6 of the 27 alien decapods were collected only on the Turkish Aegean coasts (5 Indo-Pacific species, 1 Atlantic species). The possible causes for this differentiation could be attributed to several factors.

Key words: invasive species, decapods, crustaceans, Aegean Sea, Mediterranean Sea

Introduction

Many alien species have been introduced to the Mediterranean Sea via two different pathways (i.e. the Suez Canal and shipping). A total of 955 alien species are known in the Mediterranean and the vast majority of them were reported from the eastern Mediterranean (718 species), less from the western Mediterranean (328), central Mediterranean (267) and Adriatic Seas (171). Of these, 535 species (56%) have become established in at least one area (Zenetos et al. 2010). It is worth noting that aliens have increased the total species richness of the Mediterranean Sea by 5.9% (Zenetos et al. 2010).

The eastern Mediterranean is more susceptible to biological invasions because of its location between the Atlantic, Pontic and Indo-Pacific regions, busy maritime traffic, and lagoons and bays that are crowded with fish and shellfish farms. Some invaders have outcompeted or replaced native species locally,
some are considered pests or cause nuisance, whereas other invaders are of commercial value (Galil and Zenetos 2002). The native range of four-fifths of the alien crustacean in the Mediterranean is in the Indo-Pacific Ocean, Indian Ocean and Red Sea (Zenetos et al. 2010). According to the most recent data, a total of 119 alien crustaceans have been reported in the eastern Mediterranean and 58 species belong to decapod crustaceans (Zenetos et al. 2010), presenting an accelerating entrance rate (Koukouras et al. 2010).

The Aegean Sea could be considered as a special place in the Mediterranean ecosystem in terms of its regional position, geomorphological structure, hydrographical and ecological features. The first Indo-Pacific decapods were collected in the recent years from the Greek coast of the Aegean Sea (Kevrekidis and Kevrekidis 1996; Galil 2007). Most of the alien decapods crustaceans observed in the Greek waters of the Aegean Sea have been encountered only in the south-eastern part of this sea (Dodecanese islands) and their occurrence decreasing substantially northwards and westwards (e.g. Pancucci-Papadopoulou et al. 2005a; ELNAIS 2010; Corsini-Foca et al. 2010). According to Simboura and Nicolaidou (1993), the hydrological conditions around the Rodos Island and Levantine Sea are similar, thus, a remarkable number of decapods having an Indo-Pacific origin have been established in this area (Kevrekidis and Galil 2003). The most recent data (Zenetos et al. 2011) point out that the alien marine crustaceans are almost accounted for 13.1% (31 species) of the total alien species reported along the Greek coasts (237 species).

Turkey is surrounded by four seas (Levantine Sea, Aegean Sea, Sea of Marmara and Black Sea) with different hydrographical characteristics. A total of 400 alien species belonging to 14 taxonomic groups occur along the Turkish coasts up to 2010, with the crustacean being the third group (64 species) after Mollusca (105 species) and Polychaeta (75 species) (Çinar et al. 2011). The majority of these species (306 species, 76% of the total number of species) have become established in the area, while 59 species (15%) are classified as casual, 23 species as questionable and 13 species (3%) as cryptogenic (Çinar et al. 2011). The proximity of Turkey to the Suez Canal has resulted in dense settlements of Indo-Pacific migrants (66% of the total alien species in Turkish waters), especially in habitats along the Levantine coast of Turkey. In the last years, some of them have expanded their distributional ranges to other areas of the Aegean Sea, i.e. Gökova Bay (Ateş et al. 2007; Yokes et al. 2007) or even more northern, like Alpheus rapacida in Kuşadası Bay (Özcan et al. 2007). In the Aegean Sea 165 alien species have been found and 69% of these species have been found only in the period 2005-2010 (Çinar et al. 2011).

Taking into consideration that the Turkish Aegean is bounded from Dalaman River- in southern Turkey, near Marmaris, Fethiye and Dalyan- to the opening of the Dardanelles and the Greek Aegean includes the areas of Dodecanese, the Cyclades Islands, E. Peloponnesus, central and the south Aegean, this paper
attempts to review the presence of the alien decapods reported from the Greek and the Turkish coasts of the Aegean Sea. This report was based on scientific articles about the presence of alien decapods along the Greek and the Turkish Aegean coasts and constitutes the first comprehensive baseline study for comparative purposes in the future.

Results and Discussion

Table 1 shows a list of the alien decapod crustaceans found along the Greek and the Turkish Aegean coasts. These species have different origins, including Indo-Pacific, the Red Sea, the Indian, the Atlantic and the Pacific Ocean. Most of the decapods listed in Table 1 are considered as established species in both Aegean coasts. Seven decapods were recorded only once and considered as casual species. As there is no definite evidence of its native or introduced status, *Synalpheus tumidomanus africanus* and *Thalamita poissonii* were considered as cryptogenic species. The most common pathway of the Lessepsian decapod species is the Suez Canal and shipping, while the Atlantic species were introduced to the area via shipping.

A total of 27 decapods were found on the both coasts of the Aegean Sea (Table 1). Among these, 11 species were common in both coasts. Almost all these species, such as *M. japonicus*, *A. rapacida*, *A. roseus*, *C. tenuipes*, *C. helleri*, *C. longicollis*, *I. monodi*, *M. graeffei*, *M. subgranulata*, *P. segnis*, *T. poissonii* are also known from the Levantine Sea. According to CIESM Atlas (Galil et al. 2002) *C. sapidus* was transported by ballast waters from the Atlantic in the eastern Atlantic and Mediterranean ports and some special particularities of its ecology and biology (eurythermal and euryhaline, high fecundity, aggressive, good swimmer) contributed to its broad extension in the whole Mediterranean basin.

Table 1. Alien decapod crustaceans found on the Greek and the Turkish coasts of the Aegean Sea.

<table>
<thead>
<tr>
<th>Species</th>
<th>Origin</th>
<th>Vector</th>
<th>Establishment success</th>
<th>Reference (Greek Aegean)</th>
<th>Reference (Turkish Aegean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marsupenaeus japonicus</td>
<td>Indo-Pacific</td>
<td>Via Suez</td>
<td>established</td>
<td>Kevrekidis and Kevrekidis, 1996</td>
<td>Zaitsev and Öztürk, 2001</td>
</tr>
<tr>
<td>Melicertus hathor</td>
<td>Indian Ocean</td>
<td>Via Suez</td>
<td>established</td>
<td></td>
<td>Özcanc et al. 2008</td>
</tr>
<tr>
<td>Metapenaeopsis aegyptia</td>
<td>Indo-Pacific</td>
<td>Via Suez</td>
<td>established</td>
<td>Kevrekidis et al. 1998</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Origin</td>
<td>Vector</td>
<td>Establishment success</td>
<td>Reference (Greek Aegean)</td>
<td>Reference (Turkish Aegean)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Metapenaeopsis mogiensis consobrina (Nobili, 1904)</td>
<td>Indo W. Pacific</td>
<td>Via Suez</td>
<td>established</td>
<td>Kevrekidis et al. 1998</td>
<td></td>
</tr>
<tr>
<td>Metapenaeus affinis (H. Milne Edwards, 1837)</td>
<td>Indo W. Pacific</td>
<td>Shipping</td>
<td>established</td>
<td>Aydin et al. 2009</td>
<td></td>
</tr>
<tr>
<td>Trachysalambria curvirostris (Steinitz, 1932)</td>
<td>Red Sea</td>
<td>Via Suez</td>
<td>established</td>
<td>Kevrekidis et al. 1998</td>
<td></td>
</tr>
<tr>
<td>Alpheus rapacida (De Man, 1908)</td>
<td>Indo W. Pacific</td>
<td>Via Suez</td>
<td>established</td>
<td>Pancucci-Papadopoulos et al. 2005a</td>
<td>Özcanc et al. 2008</td>
</tr>
<tr>
<td>Processa macrodactyla (Holthuis, 1952)</td>
<td>Tropical East Atlantic</td>
<td>Via Gibraltar</td>
<td>established</td>
<td>Ateş et al. 2004</td>
<td></td>
</tr>
<tr>
<td>Synalpheus tumidomamus africanaus (Crosnier & Forest, 1965)</td>
<td>Tropical East Atlantic</td>
<td>Via Gibraltar</td>
<td>cryptogenic</td>
<td>Koukouras and Kattoulas, 1974</td>
<td></td>
</tr>
<tr>
<td>Calappa pelii (Herklots, 1851)</td>
<td>Atlantic</td>
<td>Shipping</td>
<td>casual</td>
<td>Pancucci-Papadopoulos et al. 2005b</td>
<td></td>
</tr>
<tr>
<td>Callinectes sapidus (Rathbun, 1896)</td>
<td>Atlantic</td>
<td>Shipping</td>
<td>established</td>
<td>Serbetis, 1959</td>
<td>Kocataş 1971</td>
</tr>
<tr>
<td>Carupa tenuipes (Dana, 1851)</td>
<td>Indo-Pacific</td>
<td>Via Suez</td>
<td>established</td>
<td>Pancucci-Papadopoulos et al. 2005a</td>
<td>Yokes et al. 2007</td>
</tr>
</tbody>
</table>
Table 1 Continued.

<table>
<thead>
<tr>
<th>Species</th>
<th>Origin</th>
<th>Vector</th>
<th>Establishment</th>
<th>Reference (Greek Aegean)</th>
<th>Reference (Turkish Aegean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charybdis longicollis (Leene, 1938)</td>
<td>Indo-Pacific</td>
<td>Via Suez</td>
<td>established</td>
<td>Galil and Kevrekidis, 2002</td>
<td>Yokes et al. 2007</td>
</tr>
<tr>
<td>Gonioinfradens paucidentatus (A. Milne Edwards, 1861)</td>
<td>Indo-Pacific</td>
<td>Via Suez</td>
<td>casual</td>
<td>Corsini-Foka et al. 2010</td>
<td></td>
</tr>
<tr>
<td>Ixa monodi (Holthys & Gottlieb, 1956)</td>
<td>Red Sea</td>
<td>Via Suez</td>
<td>established</td>
<td>Galil and Kevrekidis, 2002</td>
<td>Ceyhan and Akyol 2008</td>
</tr>
<tr>
<td>Coelusia signata (Paulson, 1875)</td>
<td>Indo-Pacific</td>
<td>Via Suez</td>
<td>casual</td>
<td>Corsini-Foka et al. 2006</td>
<td></td>
</tr>
<tr>
<td>Micippa thalia (Herbst, 1803)</td>
<td>Indo-Pacific</td>
<td>Via Suez</td>
<td>established</td>
<td>Yokes et al. 2007</td>
<td></td>
</tr>
<tr>
<td>Myra subgranulata (Kossmann, 1877)</td>
<td>Indian Ocean/Red Sea</td>
<td>Via Suez</td>
<td>casual</td>
<td>Corsini-Foka and Kondilatos, 2006</td>
<td></td>
</tr>
<tr>
<td>Percnon gibbesi (A. Milne Edwards, 1853)</td>
<td>Atlantic</td>
<td>Via Gibraltar</td>
<td>established</td>
<td>Thassalou-Legaki et al. 2006</td>
<td></td>
</tr>
<tr>
<td>Pilumnus minutus (De Haan, 1835)</td>
<td>Indo-Pacific</td>
<td>Via Suez</td>
<td>casual</td>
<td>Kocataş and Katağan 2003</td>
<td></td>
</tr>
<tr>
<td>Portunus segnis (Forskal, 1775)</td>
<td>Indian Ocean</td>
<td>Via Suez</td>
<td>established</td>
<td>Corsini-Foka et al. 2004</td>
<td>Yokes et al. 2007</td>
</tr>
<tr>
<td>Sirpus monodi (Gordon, 1953)</td>
<td>Atlantic</td>
<td>Shipping</td>
<td>casual</td>
<td>Pancucci-Papadopoulou and Naletaki, 2007</td>
<td></td>
</tr>
</tbody>
</table>

*According Koukouras et al. (2010) this species has erroneously been considered as a Lesspsesian migrant, since is a tropical-subtropical cosmopolitan species (D’Udekem D’Acoz 1999)
A total of 10 species (3 Dendrobranchyata, 1 Caridea, 6 Brachyura) were reported only on the Greek coasts of the Aegean Sea. Almost the half of them (Synalpheus tumidomanus africanus, Percnon gibbesi, Calappa pelii and Sirpus monodi) have the Atlantic origin, while the rest (Metapenaeopsis aegyptia, Metapenaeopsis mogiensis consobrina, Trachysalambria curvirostris, Coelusia signata, Myra sudgranulata and Gonioinfradens paucidens) have the Indo-Pacific origin. Most of these decapod species have already been recorded from the Turkish coasts, but not in the Aegean coast so far. For example, C. signata (Yokes and Galil 2006a), P. gibbesi (Yokes and Galil 2006b) and M. aegyptia, M. mogiensis consobrina and T. curvirostris (Yokes and Galil 2006a) were known from the Levantine coast of Turkey. The most recent data show that the grapsoid crab, P. gibbesi occurs in the Greek Aegean coast and in the Levantine coast of Turkey, but has not reported from the Turkish Aegean coast till now (Katsanevakis et al. 2011). This tropical Atlantic crab may be regarded as one of the most invasive decapod species in the Mediterranean Sea (Katsanevakis et al. 2011).

On the other hand, a total of 6 alien decapods were only collected on the Turkish Aegean coasts. Among them, 5 species (Melicertus hathor, Metapenaeus affinis, Leptochela pugnax, Micippa thalia and Pilumnus minutus) have Indo-Pacific origins and expanded their distributional ranges to the Aegean Sea. Only the caridean shrimp, Processa macrodactyla was entered to the Mediterranean by the Gibraltar Strait and it was recorded only on the Turkish coasts of the Aegean Sea. This species was also recorded in the Spanish waters (García Raso and Salas Casanova 1985).

The success of Indo-Pacific migrant decapods in the colonization of the eastern Mediterranean could be the result of occupation of an unsaturated niche and of out-competing local species on resources such as food and shelter (Golani, 1998). The similar number of the alien decapods found on both sides of the Aegean Sea could be attributed to the similar oceanographic sea parameters prevailed in both sides (Poulos et al. 1997). The alien decapods found in both Aegean coasts were previously reported from the Levantine Sea. It seems that they tended to expand their distributional ranges towards higher geographical latitudes (Koukouras et al. 2010). The timing of the initiation of a significant increase in the number of Indo-Pacific aliens along the southwestern Levantine and the southern Aegean coasts was positively correlated with the extensive inflow of the warm-water AMC (Katağan et al. 2004) and the following significant changes of the south Aegean waters mass characteristics termed the Eastern Mediterranean Transient (EMT) (Galil and Kevrekidis 2002). The alien decapods of Atlantic origin found only on the coasts of Greece could be attributed to fortuitous factors, such as the different sampling frequency of samplings, different methods used in biological investigations in both countries. Further surveys in broader sampling depths and covering more marine zones
will supply more detailed results and could give a better view concerning the alien decapods in the whole Aegean Sea.

Acknowledgements

The authors would like to express their thanks to Dr. Zenetos A. for her assistance and useful suggestions.

References

Received: 23.01.2012
Accepted: 16.04.2012